1.创建一个类继承UserDefinedAggregateFunction类。
---------------------------------------------------------------------
package cn.piesat.test import org.apache.spark.sql.Row import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction} import org.apache.spark.sql.types.{DataType, DataTypes, IntegerType, StructType} class CountUDAF extends UserDefinedAggregateFunction{ /** * 聚合函数的输入类型 * @return */ override def inputSchema: StructType = { new StructType().add("ageType",IntegerType) } /** * 缓存的数据类型 * @return */ override def bufferSchema: StructType = { new StructType().add("bufferAgeType",IntegerType) } /** * UDAF返回值的类型 * @return */ override def dataType: DataType = { DataTypes.StringType } /** * 如果该函数是确定性的,那么将会返回true,一般给true就行。 * @return */ override def deterministic: Boolean = true /** * 为每个分组的数据执行初始化操作 * @param buffer */ override def initialize(buffer: MutableAggregationBuffer): Unit = { buffer(0)=0 } /** * 更新操作,指的是每个分组有新的值进来的时候,如何进行分组对应的聚合值的计算 * @param buffer * @param input */ override def update(buffer: MutableAggregationBuffer, input: Row): Unit = { val num= input.getAs[Int](0) buffer(0)=buffer.getAs[Int](0)+num } /** * 分区合并时执行的操作 * @param buffer1 * @param buffer2 */ override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = { buffer1(0)=buffer1.getAs[Int](0)+buffer2.getAs[Int](0) } /** * 最后返回的结果 * @param buffer * @return */ override def evaluate(buffer: Row): Any = { buffer.getAs[Int](0).toString } } -------------------------------------------------------------- 2.在main函数中使用样例 ---------------------------------------------------------------
package cn.piesat.test import org.apache.spark.sql.SparkSession import scala.collection.mutable.ArrayBuffer object SparkSQLTest { def main(args: Array[String]): Unit = { val spark=SparkSession.builder().appName("sparkSql").master("local[4]") .config("spark.serializer","org.apache.spark.serializer.KryoSerializer").getOrCreate() val sc=spark.sparkContext val sqlContext=spark.sqlContext val workerRDD=sc.textFile("F://Workers.txt").mapPartitions(itor=>{ val array=new ArrayBuffer[Worker]() while(itor.hasNext){ val splited=itor.next().split(",") array.append(new Worker(splited(0),splited(2).toInt,splited(2))) } array.toIterator }) import spark.implicits._ //注册UDAF spark.udf.register("countUDF",new CountUDAF()) val workDS=workerRDD.toDS() workDS.createOrReplaceTempView("worker") val resultDF=spark.sql("select countUDF(age) from worker") val resultDS=resultDF.as("WO") resultDS.show() spark.stop() } } -----------------------------------------------------------------------------------------------